GENETIC DIVERGENCE STUDY IN GROUNDNUT (Arachis hypogaea L.)

*1BAGATHARIYA, H. D. AND 2PATEL, M. B.

DEPARTMENT OF GENETICS AND PLANT BREEDING JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH - 362 001, GUJARAT, INDIA

*EMAIL: hdbagathariya@gmail.com

¹M.Sc. (Agri.) Student, Department of Genetics and Plant Breeding, JAU, Junagadh – 362 001, Gujarat (India) ²Assistant Research Scientist, Main Oilseeds Research Station, JAU, Junagadh – 362 001, Gujarat (India)

ABSTRACT

The genetic divergence measured by Mahalanobis's D^2 statistic grouped sixty genotypes of groundnut into 7 clusters. The clustering pattern of the genotypes did not confirm to the geographical distribution. The lowest intra-cluster distance was in cluster II, III, IV, V, VI and VII, whereas the highest intra-cluster distance was in cluster I. The maximum inter-cluster distance was found between cluster between cluster VI and VII. The minimum inter-cluster distance was found between cluster VI and V. The genotypes from cluster VII (TG-26), VI (JB-D-29), V (JB-500), IV (ICGS-44), III (KISHAN) and II (JB-564) could be selected as parents in hybridization programme.

KEY WORDS: D^2 statistic, divergence, groundnut

INTRODUCTION

Success breeding of plant programme depends largely on the choice of appropriate parents. It is expected that the utilization of divergent parents in hybridization results promising in recombinants. Genetic improvement mainly depends upon the amount of genetic variability present population. The use of Mahalanobis's D² statistics for estimating genetic divergence have been emphasized by many workers (Murthy and Arunachalam, 1966), because it permits precise comparison among all the population given in any group before effecting actual crosses. To a plant breeder, single character is not of much importance as the combined merit of number of desirable traits becomes more important when he/she is concerned with a complex trait like pod yield. Thus, for improving the pod yield, selection of parents based on number of characters having quantitative divergence is required which can be assessed by D²statistic developed by Mahalanobis (1936). Genetic

diversity plays a pivotal role in survival and adaptability of a species. When a environment changes, specific genetic variation is necessary for it to adapt and survive. A species that has a large degree of genetic diversity among its population will have more variation. The genetic diversity is a crucial factor in determining the success of hybridization programme and its importance in crop improvement has long been recognized by breeder. The more diverse parents within overall limits of fitness, the greater are the chances of heterotic F₁'s and broad spectrum of variability in segregating generation (Arunachalum, 1981 Falconer, 1989). Therefore, the first step in any crop breeding programme is to assess genetic variability.

MATERIALS AND METHODS

The experiment material consisted of 60 genotypes of groundnut. The study was conducted during kharif 2015 at the Krishi Gadh Farm, Junagadh Agricultural University, Junagadh. The soil experimental site was medium black,

ISSN: 2277-9663

alluvial in origin and medium in organic matter. The climate of the area represents tropical and semi-arid. Sixty genotypes of groundnut were sown in a Randomized Block Design (RBD) with three replications Each genotype was accommodated in a single row of 3.0 meter length with a spacing of 45 cm between rows and 10 cm between plants within the row. The experiment was surrounded by two guard rows to avoid damage and border effects. The fertilizers in the experimental area was applied at the rate of 12.50 kg/ha N_2 and 25.0 kg/ha P₂O₅, as it is a recommended dose for kharif cultivation of groundnut in the region. Other recommended agronomical practices in vogue were followed for reaping good crop. The observations were recorded on five randomly selected plants in each entry and replications, their mean values were used for statistical analysis. The characters studied were days to 50 per cent flowering, days to maturity, plant number of height (cm), secondary branches per plant, number of pods per plant, number of mature pods per plant, sound mature kernels (%), 100- kernel weight (g), kernel yield per plant (g), pod vield per plant (g), shelling out-turn (%), oil content (%), biological yield per plant (g) and harvest index (%).

RESULTS AND DISCUSSION

In the present study, D²statistic estimated on 60 genotypes of groundnut for 14 characters. On the basis of D² values, 7 clusters were formed from 60 genotypes. The cluster I contained 54 genotypes from different origins (Table 1). On the other hand, the clusters II to VII possessed only one genotype in each cluster. A wide range of variation for several characters among single as well as multi-genotype clusters was observed. The present findings are in conformity with those reported earlier in groundnut by Siddiquey et al. (2006), Odedra et al. (2008), Korat et al. (2009) and Sonone et al. (2011). The clustering pattern could be utilized in selecting the parents and deciding the cross combinations, which generate the highest possible may variability for various traits. genotypes with high values of any cluster can be used in hybridization programme for further selection and improvement.

The maximum inter-cluster distance varied from 6.46 (clusters VI and V) to 12.14 (clusters VI and VII), which indicates considerable diversity among the genotypes evaluated (Table 3). The lowest intra-cluster distance were in cluster II, III, IV, V, VI, VII (D=0), because they contains only one genotype, whereas the highest intra-cluster distance was in cluster I (D=5.62). In general, intra-cluster distance values were lower than the intercluster distances. Thus, the genotypes included within a cluster tended to diverse less from each other. The clustering pattern of genotypes showed that the genotypes of different origins clubbed into one cluster, whereas the genotypes belonging to same country or origin were grouped into different clusters indicating that the geographic distribution was not the sole criterion of genetic diversity (Table 2). The results obtained in the present study are in accordance to the findings of Korat et al. (2009), who also reported that there was no parallelism between geographic distribution genetic diversity. The earlier findings of Murty and Arunachalam (1966) also stated that genetic drift and selection in different environments could cause greater diversity than geographic distance. Further, the free exchange of seed materials among the different regions consequently causes characters constellations because of the human interference and material may lose its individuality.

The maximum inter-cluster distance (D=12.14) was observed between clusters VI and VII (D=12.14) followed by clusters IV and VI (D=11.99), V and VI (D=11.62), V and VII (D=10.75) and IV and V (D=10.62) (Table 3). The closest proximity was observed between clusters VI and V (D=6.46). The genotypes ISSN: 2277-9663

belonging to different clusters separated by high statistical distance could be used in hybridization programme for obtaining a wide spectrum of variation among the segregates. In this context, the genotypes from cluster VII (TG-26), VI (JB-D-29), V (JB-500), IV (ICGS-44), III (KISHAN), II (JB-564) could be selected as parents in hybridization programme using appropriate mating design.

High coefficient of variation was recorded for number of mature pods per plant (17.36%) followed by kernel yield per plant (16.94%), pod vield per plant (16.46%), plant height (14.74%), harvest index (14.23%), number of secondary branches per plant (14.02%), number of pods per plant (13.33%), shelling out-turn (13.19%), 100 kernel weight (12.17%) and oil content (10.16%) while it was low for biological yield per plant (3.48%) followed by days to maturity (4.85%), days to 50 per cent flowering (5.67%) and sound mature kernels (5.92%) (Table 4). In the present study, the cluster III was the best for days to maturity, 100 kernel weight, pod yield per plant and harvest index. The cluster V was best for number of secondary branches per plant, shelling out-turn and oil content. The cluster VI was best value for pod yield per plant, number of mature pods per plant and kernel yield per plant. The cluster II was best for days to 50 per cent flowering and sound mature kernels. The cluster VII possessed desirable values for plant height, because it showed the longer plant height. Therefore, intercrossing of genotypes involved in these clusters would be useful for inducing variability in the respective characters and their rational improvement for increasing the pod yield in groundnut.

analysis of The percent contribution of various characters towards the expression of total genetic divergence indicated that biological yield per plant (24.52) followed by number of pods per plant (21.24), oil content (12.43) and sound mature kernels (10.45) contributed maximum towards divergence in the present study (Table 4). It has been wellestablished fact that more the genetically diverse parents used in hybridization programme, greater will be the chances of obtaining high heterotic hybrids and broad-spectrum variability in segregating generations (Arunachalm, 1981). It has been observed that the productive hybrids resulted from high yielding parents with a high genetic diversity.

CONCLUSION

Therefore, in the present investigation based on high yielding genotypes and large inter-cluster distances, it was concluded that the genotypes from cluster VII (TG-26), VI (JB-D-29), V (JB-500), IV (ICGS-44), III (KISHAN) and II (JB-564) could be selected as parents in hybridization programme.

REFERENCES

- Arunachalam, V. (1981). Genetic distances in plant breeding. Indian J. Genet., **41**: 226-236.
- Falconer, D. S. (1989). Introduction of *Ouantitative Genetics*. 3rd Ed. John Wley and Sons. Inc., New York.
- Korat, V. P.; Kavani, R. H.; Pithia, M. S.; Savaliya, J. J. and Pansuriya, A. G. (2009). Genetic divergence in groundnut (Arachis hypogaea L.). J. Oilseeds Res., 26 (2): 148-150.
- Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proc. Nat. Inst. Sci. (India). 2: 49-
- Murty, B. R. and Arunachalam, V. (1966). The nature of divergence in relation to breeding systems in crop plants. Indian J. Genet., 25(A): 188-198.
- Odedra, R. K.; Dobariya, K. L.; Jivani, L. L.; Ponkia, H. P. and Khanpara, M. D. (2008). Genetic divergence in groundnut (Arachis hypogaea L.). Int. J. Biosci., 6: 277-281
- Siddiquey, M. N. H.; Haque, M. M.; Ara, M. J. F.; Ahmed, M. R. and Roknuzzaman, M. (2006).

Correlation and path analysis of groundnut. *Int. J. Sustainable Agric. Tech.*, **2**(7): 6-10.

Sonone, N. G.; Thaware, B. L.; Bhave, S. G.; Jadhav, B. B.; Joshi, G. D. and

Dhekale, J. S. (2011). Multivariate studies in groundnut (*Arachis hypogaea* L.). *J. Oilseeds Res.*, **28**(1): 24-28.

Table 1: Grouping of 60 genotypes of groundnut in various clusters on the basis of $\sqrt{D^2}$ –statistic

Cluster	No. of Genotypes	Name of the Genotypes	Source		
	¥ •	Girnar 1,GG-5,GG-7, GJG- 9, J-17, J-27, J-42, J-48, J-54, JB-325, JB-452, JB-634, JB-668, JB-671, JB-D-31, JB-D-35, JB-D-37, JB-E-414, JB-E-550, JB-E-554,JB-F-DR 4, JB-F-DR 34, JB-F-DR 35, JB-F-DR 49, JB-F-DR 51, JB-F-DR 59,JB-F-SD 383, JB-F-SD 404, JB-HOC 4, JB-HOC 8,JB-T5-456,Gc-400 TG-3, TG-22, TG-23	Gujarat Maharashtra		
I	54	Dh-20, Dh- 19, Dh-24, Dh-55,KRG 1	Karnataka		
		JAWAN	Orissa		
		Vemana,ICGS-10, ICGS-25, ICGS-76	Andhra Pradesh		
		Gangapuri	Madhya pradesh		
		Co-2	Tamil Nadu		
		Ec-1697, Ec-21134, Ec-21154	Argentina		
		USA 86, PI 337394, NcAc 761, NcAc 995	U.S.A		
II	1	JB-564	Gujarat		
III	1	Kishan	Orissa		
IV	1	ICGS-44	Andhra Pradesh		
V	1	JB-500	Gujarat		
VI	1	JB-D-29	Gujarat		
VII	1	TG-26	Maharashtra		

Table 2: Source and clustering pattern of 60 genotypes of groundnut

		Total						
Source	I	II	III	IV	V	VI	VII	Number of Genotypes
Gujarat	32	1	-	-	1	1	-	35
Maharashtra	3	-	-	-	-	-	1	4
Madhya Pradesh	1	-	-	-	-	-	-	1
Karnataka	5	-	-	-	-	-	-	5
Tamil Nadu	1	-	-		-	-	-	1
Andhra Pradesh	4	-	-	1	-	-	-	5
Orissa	1	-	1	-	-	-	-	2
United States of	4	-	-	-	-	-	-	1
Argentina	3	-	-	-	-	-	-	3
Total	54	1	1	1	1	1	1	60

Table 3: Average inter and intra-cluster distance $(D=\sqrt{D^2})$ values for 60 genotypes of Groundnut

Cluster	I	II	III	IV	\mathbf{V}	VI	VII
I	5.62	7.06	7.40	8.15	7.59	8.24	10.24
II		0.00	8.14	8.80	9.19	8.37	9.61
III			0.00	10.10	10.62	10.22	10.47
IV				0.00	6.46	11.99	6.81
V					0.00	11.62	10.75
VI						0.00	12.14
VII							0.00

Page 224

Table 4: Cluster means for 14 different characters in groundnut

Cluster	Days to	Days to	Plant	No. of	No.	Mature	Sound	100-	Kernel	Pod	Shelling	Oil	Biological	Harvest
	50 Per	Maturity	Height	Secondary	of	Pods/	Mature	Kernel	Yield/	Yield/	Out-	Content	Yield/	Index
	Cent		(cm)	Branches	Pods/	Plant	Kernels	Weight	Plant	Plant	Turn	(%)	Plant (g)	(%)
	Flowering			/Plant	Plant		(%)	(g)	(g)	(g)	(%)			
I	27.23	98.68	37.09	3.62	9.72	7.78	83.99	26.48	5.30	10.29	52.54	47.74	29.34	36.97
II	29.67	91.33	38.27	3.60	12.47	9.83	96.03	25.17	5.23	9.83	53.90	42.03	35.77	27.43
III	27.00	105.67	37.37	2.73	10.60	9.80	86.07	32.53	6.23	17.43	54.80	46.97	36.40	49.80
IV	25.67	94.33	42.50	2.87	5.47	4.67	95.77	22.87	4.60	8.17	58.77	46.63	45.43	17.90
V	28.67	94.67	35.13	4.13	6.07	4.87	90.57	22.37	4.17	6.77	72.93	50.50	31.20	20.80
VI	28.33	101.00	35.53	3.80	14.47	10.40	80.47	29.47	9.73	11.03	51.87	46.47	23.10	48.00
VII	28.67	92.00	45.37	2.93	9.67	9.27	89.80	25.37	5.67	12.03	47.50	47.30	59.77	21.77
Mean	27.31	98.46	37.28	3.59	9.72	7.94	84.56	26.45	5.35	10.35	52.64	43.89	47.63	30.26
SEm±	0.89	2.75	3.17	0.29	0.74	0.79	2.89	1.85	0.52	0.98	4.00	2.57	0.95	2.48
C.V%	5.67	4.85	14.74	14.02	13.33	17.36	5.92	12.17	16.94	16.46	13.19	10.16	3.48	14.23
Percentage contribution of characters towards total divergence														
No. of Times														
Appearing First	38	33	8	104	376	19	185	100	106	76	28	220	434	43
% Contribution	2.15	1.86	0.45	5.88	21.24	1.07	10.45	5.65	5.99	4.29	1.58	12.43	24.52	2.43

[MS received : April 16, 2017] [MS accepted : May 14, 2017]

www.arkgroup.co.in